Taking Disk Cylinders From Swap on Solaris 8

Kids… DO NOT TRY THIS AT HOME! If this is not done exactly right, you will render your system unbootable and corrupt your data. That being said, under some circumstances you can take some space from your swap partition and add it to an unused one without initializing your entire disk. This is particularly useful if you decide you want to use DiskSuite to mirror your system disk, but have not allocated the 100MB partition that is needed to hold the state databases. As always, BACK EVERYTHING UP FIRST. Better yet, make two backups and store them on two different systems. This is a risky procedure, and you don’t want to lose any data!

You can also use my instructions for copying a Solaris boot drive to a disk with a different partition layout as a safer alternative.

The first thing you need to do is figure out if your disk layout will allow for this procedure. Usually the swap partition is the second one on the disk, making it partition number 1 (Partition number 0 is root). If partition number 1 is swap on your system, and partition number 3 or 4 are unused, you are in good shape, and this should work. To figure this out, you should do something like this:

# format
Select the boot disk – usually disk 0
Specify disk (enter its number): 0
format> partition
format> print

This will show you the current disk layout.


Current partition table (original):
Total disk cylinders available: 24620 + 2 (reserved cylinders)

Part      Tag    Flag     Cylinders         Size            Blocks
  0       root    wm       0 -   725        1.00GB    (726/0/0)    2097414
  1       swap    wu     726 -  9436       11.90GB    (8635/0/0)  24946515
  2     backup    wm       0 - 24619       33.92GB    (24620/0/0) 71127180
  3 unassigned    wm       0                0         (0/0/0)            0
  4 unassigned    wm       0                0         (0/0/0)            0
  5        usr    wm    9437 - 10888        2.00GB    (1452/0/0)   4194828
  6        var    wm   10889 - 18148       10.00GB    (7260/0/0)  20974140
  7 unassigned    wm   18149 - 24619        8.91GB    (6471/0/0)  18694719

Here we see that partitions 3 and 4 are unused and directly after partition 1, so we can take some space from swap and assign it to one of these. Partition 2 is, of course the entire disk. I have not tried it, so I don’t know if you could assign non-sequential cylinders to a partition that is not directly after swap.

So to take some space from partition 1 and add it to partition 3, the first thing we have to do is disable swap, so the format utility will let us change it.

Comment out the following lines in your /etc/vfstab file and reboot the system.


#/dev/dsk/c1t0d0s1         -       -               swap    -       no      -
#swap    -       /tmp    tmpfs   -       yes     - 

This will bring the system up without swap enabled. You can now edit the disk label. Remember that our cylinders need to be sequential, so always work in cylinders when using the format utility.

Re-enter the format utility, select your system disk and view the partition table:

# format
Select the boot disk – usually disk 0
Specify disk (enter its number): 0
format> partition
format> print

Again we wee that partitions 3 and 4 are unused.


Current partition table (original):
Total disk cylinders available: 24620 + 2 (reserved cylinders)

Part      Tag    Flag     Cylinders         Size            Blocks
  0       root    wm       0 -   725        1.00GB    (726/0/0)    2097414
  1       swap    wu     726 -  9436       11.90GB    (8635/0/0)  24946515
  2     backup    wm       0 - 24619       33.92GB    (24620/0/0) 71127180
  3 unassigned    wm       0                0         (0/0/0)            0
  4 unassigned    wm       0                0         (0/0/0)            0
  5        usr    wm    9437 - 10888        2.00GB    (1452/0/0)   4194828
  6        var    wm   10889 - 18148       10.00GB    (7260/0/0)  20974140
  7 unassigned    wm   18149 - 24619        8.91GB    (6471/0/0)  18694719

The first thing we need to do is take some cylinders away from partition 1. In this example, we are looking to make partition 3 roughly 100MB, so we need to take about 75 cylinders from partition 1 so that we can add it to partition 3. Parititon 1 ends at cylinder 9436, so we need to subtract 75 from that number. 9436 – 75 = 9361, so that is the new ending cylinder for partition 1. We then subtract the beginning cylinder (726) from that number to give us the new total number of cylinders for partition 1. 9361 – 726 = 8635, so this is the number we enter when format asks for the size of the partition. Like so:


partition> 1
Part      Tag    Flag     Cylinders         Size            Blocks
  1       swap    wu     726 -  9360       11.90GB    (8635/0/0)  24946515

Enter partition id tag[swap]: 
Enter partition permission flags[wu]: 
Enter new starting cyl[726]: 
Enter partition size[24946615b, 9436c, 12880.92mb, 12.00gb]: 8635c
partition>

Now we have to add these 75 cylinders to partition 3.


partition> 3
Part      Tag    Flag     Cylinders         Size            Blocks
  3 unassigned    wm       0                0          (0/0/0)            0

Enter partition id tag[unassigned]: 
Enter partition permission flags[wm]: 
Enter new starting cyl[0]:9361
Enter partition size[0b, 0c, 0.00mb, 0.00gb]:75c
partition>

Print out the new partition table to make sure everything lines up correctly:


partition> print
Current partition table (original):
Total disk cylinders available: 24620 + 2 (reserved cylinders)

Part      Tag    Flag     Cylinders         Size            Blocks
  0       root    wm       0 -   725        1.00GB    (726/0/0)    2097414
  1       swap    wu     726 -  9360       11.90GB    (8635/0/0)  24946515
  2     backup    wm       0 - 24619       33.92GB    (24620/0/0) 71127180
  3 unassigned    wm    9361 -  9436      107.21MB    (76/0/0)      219564
  4 unassigned    wm       0                0         (0/0/0)            0
  5        usr    wm    9437 - 10888        2.00GB    (1452/0/0)   4194828
  6        var    wm   10889 - 18148       10.00GB    (7260/0/0)  20974140
  7 unassigned    wm   18149 - 24619        8.91GB    (6471/0/0)  18694719

Partition 1 ends at cylinder 9360, and partition 3 picks right up at cylinder 9361. Partition 3 ends at cylinder 9436, and partition 5 begins at cylinder 9437. Partition 4, of course, remains unused. Since none of the cylinders overlap, we can go ahead and write the disk label out. DO NOT DO THIS if you have any doubt at all about what you have just done. By writing out the disk label, you could corrupt the data on your formated filesystems if any cylinders overlap into them. The format utility is usually pretty smart about keeping you from making mistakes, but be very careful anyway! You don’t want to end up with scrambled eggs on a disk that has valuable data on it.

partition> label
This writes out the disk label, so you can now exit the format utility and re-enable swap in your /etc/vfstab file. Simply uncomment out the following two lines and reboot the system.


/dev/dsk/c1t0d0s1         -       -               swap    -       no      -
swap    -       /tmp    tmpfs   -       yes     -

Reboot your system, and if all goes well, it will come up, and you will see that partition 3 will have a little over 100MB on it. Usually people want to do this so they can store the DiskSuite meta database on the newly created partition. If this is the case for you, you can now move on to mirroring the system disk.

libnnz9.so: symbol nzdsi_initialize: referenced symbol not found

So you’re running the Oracle Application Server on Solaris 8, and you’ve decided to be a good systems administrator and install the latest 8_Recommended patch cluster from SunSolve. Well, I’m very sorry to inform you that you have just broken your application server. After bouncing the system, you will most likely get the following error as OAS tries to start:

ld.so.1: opmn: fatal: relocation error: file /u01/app/oracle/product/oas_midtier_9.0.4/lib/libnnz9.so: symbol nzdsi_initialize: referenced symbol not found
opmnctl: opmn start failed

If you’re anything like me, you found this during your scheduled downtime, it’s insanely early in the morning, and you really just want to go back to bed. Well, hopefully this will help.

The first thing you want to do is (optionally) make sure you are preloading your libraries:

LD_PRELOAD=$ORACLE_HOME/lib/libclntsh.so; export LD_PRELOAD

It won’t fix the problem, but it is a good idea, and it has the added advantage of making the error go away. The server still won’t start, but the error will go away and that has to be progress, right?

To really resolve the problem, however, you have to backout SunOS 5.8 linker patch 109147-39

patchrm 109147-39

Sun Document ID: 101995 identifies the problem.

On systems with certain patches installed (109147-39 on Solaris 8), applications that reference large numbers of “delayed” loadable shared objects (where the shared objects load slowly and do not explicitly define their required dependencies), may experience start-up failure or may terminate due to an error of the runtime linker.

Sun has recognized the problem, but according to them, a final resolution is pending completion.